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ABSTRACT

The “Sequentially Drilled” Joint Congruence (SeDJoCo) transfor-
mation is a set of matrix transformation equations, which coincide
with the Likelihood Equations for semi-blind source separation,
when each source is modeled as a zero-mean Gaussian process with
a known (and distinct) temporal covariance matrix. Therefore, with
such a model a solution of SeDJoCo can lead to the Maximum
Likelihood (ML) estimate of the separating matrix, which is asymp-
totically optimal. However, as we have shown in previous work,
multiple solutions of SeDJoCo may exist, and the selection of the
optimal solution among these (corresponding to the global maxi-
mum of the likelihood function) is therefore of considerable interest.
In this paper we further extend our results by proposing a new ML
approach for the identification and correction of a sub-optimal solu-
tion, assuming sources of unrestricted, general temporal covariance
structures. We demonstrate the resulting improvement in simulation
with non-stationary sources.

Index Terms— Maximum Likelihood, Semi-Blind Source
Separation, SeDJoCo, Permutation

1. INTRODUCTION

Traditionally, Blind Source Separation (BSS) and Indepen-
dent Component Analysis (ICA) employ a general model,
free of a-priori statistical information regarding the sources,
except for their mutual statistical independence. Conse-
quently, a Maximum Likelihood (ML) approach for the sepa-
ration cannot be applied with such models. Quasi ML (QML)
approaches (e.g., [1–3]), which make general assumptions
(e.g., stationarity) on the sources and use an “educated guess”
for the associated parameters (or spectra) have been proposed
in different contexts. However, in some cases, commonly
referred to as “semi-blind”, statistical information on the
sources is available, enabling to take a true ML approach and
thereby to benefit from its asymptotic optimality [4] in the
sense of minimal interference-to-source ratio (ISR).
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One of the prevalent models for semi-blind source sep-
aration (semi-BSS) is that of zero-mean Gaussian (possibly
non-stationary) sources with known (and distinct) temporal
covariance matrices. It has been shown (e.g., [1, 4] and [5]
(chapter 7)) that for obtaining the ML estimate of the separat-
ing matrix in such models, i.e., solve the “Likelihood Equa-
tions”, a special form of joint matrix transformations (rem-
iniscent of, but essentially different from, approximate joint
diagonalization) needs to be solved. That form was termed a
“Sequentially Drilled” Joint Congruence (SeDJoCo) transfor-
mation in [6] (where it was also shown to be relevant in the
context of Coordinated Beamforming (CBF), see also [7]).

Several solution strategies for SeDJoCo, all in the form
of iterative algorithms, have been proposed in recent years,
either explicitly or implicitly - see, e.g., QML [1], Iterative
Relaxations [8] or Newton-Conjugate-Gradient (NCG) [6].
However, although the number of unknowns equals the num-
ber of equations in SeDJoCo, these equations are nonlinear,
and therefore the solution is generally non-unique. Thus,
these algorithms are all capable of finding an exact solution
of the Likelihood Equations, which is guaranteed to be a sta-
tionary point of the Likelihood, but not necessarily its global
maximizer, i.e., the true ML estimate.

Indeed, it was recently shown in [9] that when a solu-
tion of SeDJoCo exists (which is guaranteed under some mild
conditions, see [6]), there exist at least K! solutions (where
K is the number of sources). These solutions correspond to
different estimates of the separating matrix, involving all K!
possible permutations (and their respective induced scales) of
the sources, where only one of these is the ML estimate (and
the others are essentially different, i.e., differ by more than
their permutation and scaling, as we shall explain in the se-
quel). We refer to the other K! − 1 (non-ML) solutions as
sub-optimal solutions, since they usually still provide reason-
able (but not optimal) separation in terms of ISR. It is impor-
tant to realize, that in semi-BSS, where the sources’ statisti-
cal properties are known (and distinct, such as in the above-
mentioned Gaussian model), there is no reason for scale or
permutation ambiguity in the separation, because each recon-
structed source can be matched to its own (known) model.



Thus, an intuitive heuristic approach for identifying such
sub-optimal solutions and using them in computation of the
ML solution was proposed in [9] for the case of stationary
sources. In this work we propose a more rigorous and gen-
eral (and approximately optimal) approach, which is applica-
ble not only to stationary sources, but also to any Gaussian
sources with general temporal covariance matrices.

2. PRELIMINARIES: SEDJOCO AND ITS
MULTIPLE SOLUTIONS

For completeness of the presentation, we briefly review the
problem formulation, the SeDJoCo set of equations and the
characterization of its multiple solutions.

Consider the classic linear mixture model X = AS,
where A ∈ RK×K is an unknown, deterministic (invertible)
mixing-matrix, S = [s1 s2 · · · sK ]

T ∈ RK×T is an un-
known sources’ matrix of K statistically independent source
signals, each of length T , and X ∈ RK×T is the observed
mixtures matrix, from which it is desired to estimate the
demixing-matrix B , A−1 and, subsequently, to which the
estimated “B will be applied in order to separate (estimate)
the source signals. As shown in [1, 4] and [5] (chapter 7),
when the source signals are zero-mean Gaussian, each with a
known temporal covariance matrixCk , E
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]
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distinct from all other covariance matrices, the ML estimate“BML, corresponding to the global maximum of the likeli-
hood, is a solution of the following set of K2 equations (K
vector equations with K elements each):“BQk

“BT
ek = ek, ∀k ∈ {1, . . . ,K}, (1)

where the “pinning vector” ek denotes the k’th column of the
K ×K identity matrix, and where the ordered set of matrices

Qk ,
1

T
XC−1

k X
T ∈ RK×K , ∀k ∈ {1, . . . ,K} (2)

are termed the “target-matrices”. The solution “B of (1) jointly
transforms the set of “target-matrices” so that the k’th column
(and, by symmetry of Qk, row) of the transformed matrix“BQk

“BT
equals the vector ek. This transformation is illus-

trated in Fig. 1 for K = 3.
Under the conditions stated above, a solution “B always

exists, but is not unique, as at least K! − 1 other essentially
different (for K > 2) solutions exist. To show that, consider
a SeDJoCo problem with a given set {Qk}Kk=1. Additionally,
consider yet another (different) SeDJoCo problem, with the
same set of target matrices, but in a slightly different order, in
which the first two are swapped: {‹Qk}Kk=1, defined as ‹Q1 =

Q2,‹Q2 = Q1, and ‹Qk = Qk, ∀k ∈ {3, ...,K}.
Let B denote a solution for the latter. Now define P 1,2

as the (symmetric) permutation matrix that swaps the first and
second elements of a vector, namely P 1,2e1 = e2, P 1,2e2 =

Fig. 1: Illustration of SeDJoCo as a joint matrix transformation for K = 3.

e1 and P 1,2ek = ek for all other k ∈ {3, ...,K}. We claim
that the matrix B′ = P 1,2B is a solution for the original
SeDJoCo problem with {Qk}Kk=1, since

B′Q1B
′Te1 = P 1,2BQ1B

TPT
1,2e1

= P 1,2B‹Q2B
Te2 = P 1,2e2 = e1;

(3)

similarly, B′Q2B
′Te2 = e2; and, trivially, B′QkB

′Tek =
ek for all other k ∈ {3, ...,K}. Note that generally,B′ would
be essentially different from other solutions of the original
problem, namely the difference will not merely be up to some
permutations of rows and / or columns, because for the SeD-
JoCo problem with the permuted target matrices, the entire
set of implied polynomial equations (in the elements ofB) is
changed (with respect to the set implied by the original prob-
lem), in the sense that different coefficients multiply different
second-order monomials in the set.

Since any permutation matrix can be expressed as the
product of two-elements-permutation matrices, the above re-
sult may be generalized and we conclude that the number
of solutions having this particular structure is equal to the
number of possible permutations, K!. Of course, one of these
solution will (most probably) be the desired ML solution.
The set of K!− 1 other solutions in this “family”, denoted by
P , are referred to as the sub-optimal, “wrongly permuted” so-
lutions. We now proceed to describe the proposed method for
identification and correction of such sub-optimal solutions.

3. THE PROPOSED
“IDENTIFICATION-CORRECTION” SCHEME

Let “B be a solution of (1) for the Gaussian semi-BSS prob-
lem described in the previous section. We remind that since
the covariance matrices {Ck}Kk=1 are known, the ML solu-
tion should be permutation-free and properly scaled in accor-
dance with this prior available information (in contrast to a
general BSS problem). Therefore, when “B is the ML esti-
mate, the estimated sources, given by the rows of Ŝ = “BX ,
should be ordered correctly, and, under mild asymptotic con-
ditions, have approximately the same covariance matrices as
the true sources. However, if “B ∈ P , the estimated sources
may be wrongly permuted and scaled. In the following, we



shall assume that if a non-ML solution has been obtained, it
is a sub-optimal solution belonging to P .

When “B is fixed, each row of Ŝ is obviously (zero-mean)
Gaussian. Denote by “Ck , E

î
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ó
∈ RT×T (for all

k ∈ {1, . . . ,K}) as the covariance matrices of the estimated
sources (assuming that “B is fixed). If “B ∈ P , we have

ŝk ≈ γksp(k), ∀k ∈ {1, . . . ,K}, (4)

where {γk ∈ R}Kk=1 are unknown (deterministic) scaling fac-
tors and p(·) : {1, . . . ,K} → {1, . . . ,K} is an unknown
(deterministic and injective) permutation function. Thus,“Ck ≈ γ2

k ·Cp(k), ∀k ∈ {1, . . . ,K}. (5)

Assuming that the estimated sources are approximately statis-
tically independent (given “B), their joint pdf is given by (to
simplify the notation, we use γ , [γ1 γ2 . . . γK ]

T):
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where | · | denotes the determinant. Taking the log and substi-
tuting (5) yields
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where c is a constant independent of p(·). Accordingly, the
ML estimates of γ and p(·) are given by

{γ̂ML, p̂ML(·)} = argmin
γ∈RK ,p(·)∈Π

F (γ, p(·)) , (8)

where Π is the set of all valid permutation functions (with
cardinality |Π| = K!), and where

F (γ, p(·)) , 1

2

K∑
k=1

ß
T log γ2

k +
1

γ2
k

ŝT
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Clearly, for any fixed p(·), the (candidate) optimal γ` is given
by differentiating F (γ, p(·)) and equating the derivative to
zero. Indeed, by doing so we have

∂

∂γ`
F (γ, p(·)) =

T

γ`
− 1

γ3
`

ŝT
` C
−1
p(`)ŝ` =! 0, (10)

yielding the (candidate) ML estimates of the scaling factors

γ̂2
`ML

=
1

T
ŝT
` C
−1
p(`)ŝ`, ∀` ∈ {1, . . . ,K}, (11)

up to an inevitable sign ambiguity. Notice that we then get

F (γ̂ML, p(·)) =
T

2

K∑
k=1

{
log γ̂2

kML
+ 1
}
, (12)

so that in order to determine the minimizer of F (γ, p(·)), it
is sufficient to only minimize

∑K
k=1 log γ̂2

kML
. This enables us

to efficiently find the ML estimates of γ and p(·) as follows.
Given the estimated sources Ŝ = “B0X , compute a K × K
“confusion matrix”G, whose (k, `)’th element is defined as

G(k,`) = log
Ä
ŝT
` C
−1
k ŝ`/T

ä
. (13)

The ML estimate of p(·) is then given by the permutation
which re-orders the rows ofG so as to minimize its trace,“PML = argmin“P∈Π Trace

Ä“PGä , (14)

where “PML and Π are matrix representations of p̂ML(·) and of
the set Π, respectively. Subsequently

γ̂ML = exp
Ä

diag
Ä“PMLG

ää
, (15)

where diag(·) forms a vector of the diagonal elements of its
argument, and exp(·) works elementwise.

Given this ML estimate of the “wrong” permutation and
scaling in “B, it is readily possible to modify “B so as to
“undo” these permutation and scaling. Of course, the re-
sulting modified “B will no longer be a solution of the given
SeDJoCo problem (of which “B was). However, it is reason-
able to assume that re-initializing a gradient-based iterative
solution algorithm with the modified “B would promote con-
vergence to a nearby solution (in the same family) that would
be permutation- and scaling-free - namely the ML solution.

Thus, the ML “identification-correction” scheme for a
given solution “B0 of (1) takes the following steps:

1. Compute the estimated source matrix Ŝ = “B0X;

2. ComputeG using (13) and then find “PML and γ̂ML;

3. Compute a new initial guessBinit = “PT

MLΓ̂
−1

ML
“B0;

4. Solve (1) (e.g., with NCG [9]) using the new initial
guessBinit.

Γ̂ML above is a diagonal matrix with γ̂kML as its (k, k)’th ele-
ment; “PML (in (14)) can either be found precisely by an ex-
haustive search (for small values of K), or approximated by
a greedy search (for larger values of K). Note that when “B0

happens to be the ML solution, we would get “PML = I and
Γ̂ML ≈ I , soBinit would be (almost) identical to “B0, and the
iterative solution would converge back to “B0. The scheme
can thus be used to identify an optimal solution: If “PML 6= I

then “B0 is sub-optimal, but if “PML = I then “B0 is very
likely to be optimal, and no further action is required.

It is interesting to compare our approach with the one pre-
sented in [9] for the case of stationary sources: Exploiting the
ensuing Toeplitz structure of the covariance matricesCk, and



the fact that Toeplitz matrices are asymptotically diagonalized
by the (normalized) DFT matrix F ∈ CT×T , we obtain
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Here ˜̂sk is the DFT of ŝk, ‹Cp(k) is diagonal, P̂k(ω) is the
periodogram spectrum estimate of ŝk and Pk(ω) is the k’th
source’s true spectrum. Thus, the “closeness” measure of
each estimated source to its true spectrum, which was a
heuristic least squares measure (between the scaled estimated
spectrum and the true spectrum) in [9], is replaced here with
a measure that integrates over the ratio between the peri-
odogram and the true spectrum.

Next, we demonstrate the resulting near-optimal perfor-
mance, in the sense of attaining the induced Cramér-Rao
lower bound (iCRLB, [4]) on the ISR.

4. SIMULATION RESULTS

We mixed K = 8 Gaussian non-stationary sources, obtained
by first generating stationary Gaussian Moving Average (MA)
processes of order 6 (using 8 different fixed random length-6
FIR filters), and then multiplying each process by an “en-
velope signal” given by ek[n] , σk + cos (2πn/Nk + φk) ,

where {φk, Nk, σk}8k=1 are fixed random values. In each trial
the mixing matrix’ elements were drawn independently from
a standard Gaussian distribution, and we used T samples of
the mixture signals to construct the “target-matrices” (2) for
the SeDJoCo equations. NCG [6] was used to solve SeDJoCo
with an initial guess B0 = I to obtain “B0. Then, we used
the proposed (approximate) ML “identification-correction”
scheme to obtain the final estimate of the demixing matrix “B.
Our results are based on 1000 independent trials.

Fig. 2 shows the average empirical total ISR (as defined,
e.g., in [10]) versus T , obtained by the “non-corrected” (“B0)
and “corrected” (“B) solutions. This average is taken over
the “best” (lowest ISR) 99% trials of “B0 and “B (separately),
since in some (rare) trials “B0 /∈ P , so our model assumption
(4) does not hold, and the proposed scheme does not (nec-
essarily) yield the ML solution. In such “outlier” cases, the
solution “B might be so “bad”, in terms of ISR, that a sin-
gle realization can devastate the empirical ISR average. As
mentioned, we address this by discarding the worst 1% of the
trials. However, it is still possible that “B0 /∈ P , and “B would
be the ML solution, or that “B0 ∈ P , and “B would not be
the ML solution, since “B does not depend directly on the dis-
tance of “B0 from the ML solution, but rather on the stationary
point to which the algorithm converges when initialized by

Fig. 2: Average ISR vs. T of the “non-corrected” and “corrected” SeDJoCo
solutions, compared with the iCRLB (whose apparent non-smoothness is due
to the different temporal variance-profiles of the sources). Results are based
on 1000 independent trials, where the average was taken over the “best” 99%
trials (for each solution, separately) as explained in the text.

Fig. 3: Empirical percentage for a wrong permutation solution (and hence,
not the ML solution) vs. T . Based on averaging 1000 independent trials.“B0. Considering this, the improvement in ISR between the
non-corrected and corrected estimates is easily seen, with the
corrected estimate attaining the iCRLB, implying optimality.

Additionally, we present in Fig. 3 the empirical probabil-
ity (versus T ) for a non-corrected / corrected solution to be
“wrongly permuted”, based on all 1000 trials (for each T ).
To this end, the wrong permutations were identified using our
knowledge of the true mixing matrix in each trial. Evidently,
our ML “identifiction-correction” scheme reduces the prob-
ability of a wrong permutation substantially, thus increasing
the overall efficiency of the entire separation process.

5. CONCLUSION

In the context of the Gaussian semi-BSS problem, we pro-
posed an approximate ML “identification-correction” scheme
for solutions of the SeDJoCo problem which are not the ML
solution. The proposed scheme is general and appropriate
for any set of Gaussian sources (not necessarily stationary)
with known temporal covariance matrices. In comparison to
the naı̈ve approach, by which any SeDJoCo solution is deter-
mined to be the estimated demixing matrix, our method shows
significant improvement in the resulting empirical probability
of obtaining the ML solution, hence leading to improved ISR
(optimal in most cases).
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