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Abstract—The truncated version of the higher-order singular value
decomposition (HOSVD) has a great significance in multi-dimensional
tensor-based signal processing. It allows to extract the principal compo-
nents from noisy observations in order to find a low-rank approximation
of the multi-dimensional data. In this paper, we address the question
of how good the approximation is by analytically quantifying the tensor
reconstruction error introduced by the truncated HOSVD. We present
a first-order perturbation analysis of the truncated HOSVD to obtain
analytical expressions for the signal subspace error in each dimension
as well as the tensor reconstruction error induced by the low-rank
approximation of the noise corrupted tensor. The results are asymptotic in
the signal-to-noise ratio (SNR) and expressed in terms of the second-order
moments of the noise, such that apart from a zero mean, no assumptions
on the noise statistics are required. Empirical simulation results verify
the obtained analytical expressions.

Index Terms—Perturbation analysis, higher-order singular value de-
composition (HOSVD), tensor signal processing.

I. INTRODUCTION

The problem of extracting information and parameters of multi-
dimensional signals from noisy observations plays an important role
in a broad variety of applications in signal processing. In order to
exploit the multi-dimensional structure of the signals, tensor-based
algorithms are often used. Many of these algorithms require a low-
rank approximation of the measurement tensor as a preprocessing
step. Such an approximation is usually obtained by the higher-order
singular value decomposition (HOSVD) [1], which preserves the
multi-dimensional nature inherent in the data. Its truncated version
enables the retrieval of the principal components to form a low-
rank approximation of the measurement tensor. In contrast to the
matrix case, the truncated HOSVD is not necessarily the best low-
rank approximation of a tensor in the Frobenius norm. Thus, [2]
proposes an iterative algorithm based on higher-order orthogonal
iterations (HOOI) to compute the best rank-(r1, r2, . . . , rN ) approx-
imation. However, as shown in [3], the improvement in terms of
the reconstruction error from the HOOI algorithm over the truncated
HOSVD is only marginal in the low signal-to-noise ratio (SNR)
regime and negligible for high SNRs. Hence, the truncated HOSVD
is usually preferred. Applications where the truncated HOSVD is
commonly used are, for instance, image processing [4]–[6], ob-
ject/pattern recognition [7]–[11], parameter estimation [12]–[14],
control engineering [15], [16], data analysis [17]–[22], and others.
Therefore, a performance analysis to assess the reconstruction error
introduced by the low-rank approximation based on the truncated
HOSVD is of major importance when analyzing the performance of
several algorithms that are based on such a low-rank approximation.

A first-order perturbation analysis for the n-mode singular vectors
and singular values obtained from the HOSVD was first presented in
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[1]. Therein, however, only the full HOSVD without the truncation
was investigated. In [23], a first-order performance analysis for the
best low-rank approximation of a tensor [2] in the least squares
sense was presented. However, both perturbation analyses do not
provide explicit analytical expressions for the reconstruction error
in terms of the noise statistics. In the case of the multidimensional
harmonic retrieval problem, a first-order expansion of the HOSVD-
based subspace estimation error of the noisy measurement tensor has
been proposed in [24], which generalizes the first-order performance
analysis framework for the subspace estimation error from the SVD
of the measurement matrix [25] to the tensor case. This framework is
applicable whenever the signal component is superimposed by a small
noise contribution. In [24], the derived analytical mean square error
(MSE) expressions merely depend on the second-order moments of
the noise and hence, only require the noise to be zero mean. However,
a perturbation analysis of the truncated HOSVD and its associated
low-rank approximation of the tensor has so far, to the best of our
knowledge, not been reported in the literature.

In this work, we further extend [24] and propose a first-order per-
turbation analysis of the truncated HOSVD. Specifically, we provide
analytical closed-form MSE expressions for the tensor reconstruction
error in terms of the second-order moments of the noise. Thus, apart
from a zero mean and finite second-order moments, no assumptions
on the statistics of the noise are required, i.e., the derived expressions
are even valid for non-Gaussian or colored noise. Moreover, the
expressions are asymptotic in the signal-to-noise ratio (SNR). In
order to provide further insights into the truncated HOSVD, we
also provide analytical MSE expressions for the subspace estimation
error in the n-th mode, which may be of interest in some of
the aforementioned applications. Additionally, we derive simplified
versions of the analytical MSE expressions for the reconstruction
error and the subspace estimation error for the special case of
uncorrelated noise with equal variance. Simulations show that the
analytical results provide an excellent match to the empirical ones.

II. NOTATION

For the sake of notation, we will use the symbols a, a, A, and A
for a scalar, column vector, matrix, and tensor variables respectively.
The superscripts −1, ∗, T, H denote the matrix inverse, complex
conjugate, transposition, and complex conjugate transposition, re-
spectively. The notations E{·}, Tr[·], ⊗, ∥ · ∥F, and ∥ · ∥2 are used
for expectation, trace, Kronecker product, Frobenius norm, and 2-
norm operators, respectively. In this work, we will use the property
Tr[A ·B] = Tr[B ·A] for any A ∈ CN×M and B ∈ CM×N . For
a matrix A = [a1,a2, . . . ,aM ] ∈ CN×M , where a1,a2, . . . ,aM

denotes its columns, the operator vec{·} defines the vectorization
operation as vec{A}T = [aT

1 ,a
T
2 , . . . ,a

T
M ]. This operator has the
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property vec{A ·X ·B} = (BT ⊗A) · vec{X}, where A, X , B
are matrices with proper dimensions.

Let A ∈ CM1×M2×···×MR be a tensor of order R (an R-way
array), where Mr is its size along the r-th mode. Furthermore, [A](r)
denotes the r-mode unfolding of A which is performed according
to [1]. Additionally, the r-mode product of a tensor A with a matrix
B ∈ CN×Mr (i.e., A×rB) is defined as C = A×rB ⇐⇒ [C](r) =
B · [A](r), where C is a tensor with the corresponding dimensions.
For the sake of notational simplicity, we define the following notation
for multiple Kronecker and r-mode products

R⊗
r=1

Br = B1 ⊗B2 ⊗ · · · ⊗BR

A
R

×r
r=1

Br = A×1 B1 ×2 B2 ×3 · · · ×R BR.

Another property that is often used in this work is C =

A
R

×r
r=1

Br ⇐⇒ [C](r) = Br · [A](r) ·
(⊗R

j=r+1 B
T
j ⊗

⊗r−1
i=1 BT

i

)
.

Moreover, the higher order norm of a tensor is defined as ∥A∥H =
∥[A](r)∥F = ∥vec{[A](r)}∥2 ∀r = 1, 2, . . . , R.

III. SIGNAL MODEL

Let X 0 ∈ CM1×M2×···×MR be a noiseless tensor of order R. In
addition, let M =

∏R
r=1 Mr be the number of elements of X 0. Let

p1, p2, . . . , pR denote the r-ranks of such a tensor that are defined
as pr = rank

(
[X 0](r)

)
for r = 1, 2, . . . , R. By calculating the

HOSVD of X 0 we obtain

X 0 = S
R

×r
r=1

Ur = S[s]
R

×r
r=1

U [s]
r ,

where Ur =
[
U

[s]
r U

[n]
r

]
∈ CMr×Mr are the unitary matrices

obtained from the Singular Value Decomposition (SVD) of [X 0](r) ∈
CMr× M

Mr , and U
[s]
r ∈ CMr×pr and U

[n]
r ∈ CMr×(Mr−pr) have

unitary columns ∀r = 1, 2, . . . , R, i.e.,

[X 0](r) = Ur ·Σr · V H
r

=
[
U

[s]
r U

[n]
r

][
Σ

[s]
r 0pr×M/Mr

0(Mr−pr)×pr 0(Mr−pr)×M/Mr

][
V

[s]
r V

[n]
r

]H
,

where Σ
[s]
r = diag

{
σ
(i)
r

}pr

i=1
contains the singular values of [X 0](r),

and V
[s]
r ∈ C

Mr
M

×pr and V
[n]
r ∈ C

Mr
M

×(Mr
M

−pr) have unitary
columns. Furthermore, let X ∈ CM1×M2×···×MR be a noisy tensor
from which we want to estimate X 0. Therefore, we have

X = X 0 +N , (1)

where N ∈ CM1×M2×···×MR is a random additive noise tensor.
Moreover, we define the r-mode correlation matrices Rr of N as1

Rr , E
{
vec
{
[N ](r)

}
· vec

{
[N ](r)

}H} ∈ CM×M .

Note that the signal to be represented by X and X 0 depends on
the application. To illustrate this point, some examples are shown in
Table I. As before, we can compute the HOSVD of the noisy tensor

X as X = Ŝ
R

×r
r=1

Ûr , where

[X ](r) = Ûr · Σ̂r · V̂
H

r

=
[
Û

[s]

r Û
[n]

r

] [ Σ̂
[s]

r 0pr×M/Mr

0(Mr−pr)×pr Σ̂
[n]

r

] [
V̂

[s]

r V̂
[n]

r

]H
.

1Note that R1,R2, . . . ,RR are permuted versions of each other.

TABLE I: Different interpretations for the low-rank tensor X 0, and
the noisy tensor X according to equation (1)

Application X 0 X
De-noising True data Noisy data

Compression Compressed data Uncompressed data
Parameter Estimation Ideal measurements Noisy measurements

In this case, Û
[s]

r ∈ CMr×pr is an estimate of U
[s]
r . Moreover, we

assume that the r-ranks of the noiseless tensor X 0 are either known,
fixed or estimated before performing the truncated HOSVD. Thereby,
using these Û

[s]

r matrices, we can estimate X 0 from X as X 0 ≈

X̂ = Ŝ [s] R

×r
r=1

Û
[s]

r , where the truncated core tensor Ŝ[s]
is computed

as

Ŝ [s]
= X

R

×r
r=1

Û
[s]H

r ∈ Cp1×p2×···pR . (2)

With this setup, our goal is to find an analytical expression for
E
{
∥∆X∥2H

}
, where ∆X , X̂ −X 0.

IV. SIGNAL SUBSPACE PERTURBATION

Let us first analyze the perturbation of the r-mode signal subspaces,
which are defined as the column spaces spanned by U

[s]
r for r =

1, 2, . . . , R.

A. General Expression

Let ∆U
[s]
r be the perturbation present in Û

[s]

r . Therefore, motivated
by [25], we can write Û

[s]

r as Û
[s]

r = U
[s]
r +∆U

[s]
r . For the truncated

HOSVD tensor estimation, we are only interested in the perturbation
on the column space spanned by Û

[s]

r . Therefore, we can use the
result obtained in [24], which is

∆U [s]
r = U [n]

r ·U [n]H

r · [N ](r) · V [s]
r ·Σ[s]−1

r +O(∆2). (3)

Note that ∆U
[s]H

r · U [s]
r = 0, which means that the perturbation is

orthogonal to the column space of U [s]
r . To simplify this expression

let Ñr ∈ C(Mr−pr)×pr be the transformed version of r-mode
unfolding of the noise, defined as

Ñr , U [n]H

r · [N ](r) · V [s]
r , (4)

with its corresponding correlation matrix denoted as R̃r ,
E{vec{Ñr} · vec{Ñr}H}. Note that we can express R̃r in terms
of the r-mode correlation matrix of the noise Rr as

R̃r = E
{
vec
{
Ñr

}
· vec

{
Ñr

}H
}

=
(
V [s]T

r ⊗U [n]H

r

)
·Rr ·

(
V [s]∗

r ⊗U [n]
r

)
. (5)

Therefore, by applying the notation proposed in equation (4), we
rewrite equation (3) as

∆U [s]
r = U [n]

r · Ñr ·Σ[s]−1

r +O(∆2). (6)

Note that the choice of U [s]
r is not unique when the HOSVD of X 0 is

calculated, but the subspace spanned by the columns of U [s]
r is always

unique. Therefore, we focus on the subspace perturbation only. To
that end, let T r = U

[s]
r · U [s]H

r be the projection matrix onto the
column space spanned by U

[s]
r . Since the matrices T r are unique for

r = 1, 2, . . . , R, regardless of the choice of U [s]
r , we will investigate

the perturbations of those matrices (denoted as ∆T r). Furthermore,
motivated by [24], the estimated signal subspace projection matrices
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(defined as T̂ r = Û
[s]

r ·Û [s]H

r ) can be expressed as T̂ r = T r+∆T r ,
where

∆T r = U [s]
r ·∆U [s]H

r +∆U [s]
r ·U [s]H

r +O(∆2). (7)

Note that ∆U
[s]
r · ∆U

[s]H

r is a second order term and, therefore, it
is considered inside O(∆2). In this section the goal is to obtain an
analytical expression for the expected value of the Frobenius norm
of the r-mode subspace estimation error, i.e., E

{
∥∆T r∥2F

}
. To that

end, we first analyze the following expression

∥∆T r∥2F = Tr
[
∆T r ·∆TH

r

]
(8)

Substituting equation (7) into (8) and neglecting the terms that
contain O(∆2), we obtain

∥∆T r∥2F ≈ Tr
[
U [s]

r ·∆U [s]H

r ·U [s]
r ·∆U [s]H

r

]
+Tr

[
U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r

]
+Tr

[
∆U [s]

r ·U [s]H

r ·U [s]
r ·∆U [s]H

r

]
+Tr

[
∆U [s]

r ·U [s]H

r ·∆U [s]
r ·U [s]H

r

]
.

Since ∆U
[s]H

r · U [s]
r =

(
U

[s]H

r ·∆U
[s]
r

)H
= 0pr×pr and U

[s]H

r ·
U

[s]
r = Ipr , we can use the properties of the trace operator to simply

this further to

∥∆T r∥2F ≈ 2 · Tr
[
∆U [s]H

r ·∆U [s]
r

]
(9)

Now, by using equation (6) and neglecting the second order term,
we can see that

Tr
[
∆U [s]H

r ·∆U [s]
r

]
≈ Tr

[
Σ[s]−1

r · Ñ
H

r ·U [n]H

r ·U [n]
r · Ñr ·Σ[s]−1

r

]
= Tr

[
Σ[s]−1

r · Ñ
H

r · Ñr ·Σ[s]−1

r

]
= Tr

[(
Ñr ·Σ[s]−1

r

)H
·
(
Ñr ·Σ[s]−1

r

)]
= ∥Ñr ·Σ[s]−1

r ∥2F

= Tr

[
vec
{
Ñr ·Σ[s]−1

r

}
· vec

{
Ñr ·Σ[s]−1

r

}H
]

= Tr
[ (

Σ[s]−2

r ⊗ I(Mr−pr)

)
· vec{Ñr} · vec{Ñr}H

]
. (10)

Next, we take the expected value of equation (10) and obtain

E
{
Tr
[
∆U [s]H

r ·∆U [s]
r

]}
≈ E

{
Tr
[(

Σ[s]−2

r ⊗ I(Mr−pr)

)
· vec{Ñr} · vec{Ñr}H

]}
= Tr

[(
Σ[s]−2

r ⊗ I(Mr−pr)

)
· R̃r

]
We can now take the expected value of ∥∆T r∥2F (from equation (9))
and use this relation to obtain the desired closed-form expression

E
{
∥∆T r∥2F

}
≈ E

{
2 · Tr

[
∆U [s]H

r ·∆U [s]
r

]}
= 2 · Tr

[(
Σ[s]−2

r ⊗ I(Mr−pr)

)
· R̃r

]
. (11)

B. Special Case of Uncorrelated Noise

Equation (11) can be simplified even further if we assume that the
noise is zero-mean and uncorrelated with variance σ2

N , i.e., Rr =

σ2
N · IM . Therefore, R̃r in equation (5) is simplified to

R̃r =
(
V [s]T

r ⊗U [n]H

r

)
· σ2

N · IM ·
(
V [s]∗

r ⊗U [n]
r

)
= σ2

N ·
(
V [s]T

r · V [s]∗
r ⊗U [n]H

r ·U [n]
r

)
= σ2

N · (Ipr ⊗ IMr−pr ) = σ2
N · Ipr·(Mr−pr). (12)

Thus, the desired expression in equation (11) becomes

E
{
∥∆T r∥2F

}
= 2 · Tr

[(
Σ[s]−2

r ⊗ σ2
N · I(Mr−pr)

)]
= 2 · (Mr − pr) · σ2

N ·
pr∑
i=1

1(
σ
(i)
r

)2 . (13)

V. TRUNCATED HOSVD ESTIMATE PERTURBATION

A. General Expression

In this section we investigate the overall perturbation of the
estimated tensor X̂ , which is calculated as

X̂ = Ŝ[s]
R

×r
r=1

Û
[s]

r .

To this end, we can use equation (2) to obtain

X̂ = Ŝ [s]
R

×r
r=1

Û
[s]

r = X
R

×r
r=1

T̂ r.

Moreover, by inserting the relations X = X 0+N and T̂ = T+∆T ,
this expression expands to

X̂ = X 0

R

×r
r=1

T̂ r +N
R

×r
r=1

T̂ r

= X 0

R

×r
r=1

(T r +∆T r) +N
R

×r
r=1

(T r +∆T r) (14)

= X 0

R

×r
r=1

T r +N
R

×r
r=1

T r +

R∑
r=1

X 0 ×r ∆T r

R

×i
i=1
i ̸=r

T i

+O(∆2)

Note that, all the terms with more than one error variable (such
as N , ∆T 1,∆T 2, . . . ,∆TR) are included inside O(∆2). For the
sake of simplicity, let us define the noise tensor projected on the

signal subspaces N [s] as N [s] , N
R

×r
r=1

T r . Since we know that

X 0 ×r T r = X 0 for all r = 1, 2, . . . , R, we can further simplify

equation (14) to X̂ = X 0 +
R∑

r=1

(X 0 ×r ∆T r) + N [s] + O(∆2).

Therefore, X̂ can be expressed as X̂ = X 0 +∆X , where

∆X =

R∑
r=1

(X 0 ×r ∆T r) +N [s] +O(∆2).

As in the previous section, we derive an analytical expression for
the expected value of Frobenious norm of the error term of interest
(i.e., E

{
∥∆X∥2H

}
). Let us assume that ∆T 1,∆T 2, . . . ,∆TR and

N [s] are independent from each other. Therefore, we approximate
E
{
∥∆X∥2H

}
to

E
{
∥∆X∥2H

}
≈ E

{
R∑

r=1

∥X 0 ×r ∆T r∥2H + ∥N [s]∥2H

}
. (15)

Let us analyze the term ∆TH
r · ∆T r . By applying the result

obtained in equation (7), we can approximate this term (by neglecting
the terms that contain O(∆2) in (7)) to

∆TH
r ·∆T r ≈ U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r +∆U [s]
r ·∆U [s]H

r .
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(a) Subspace estimation error E
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.

Fig. 1: (a): Subspace estimation errors corresponding to each of the subspaces of tensor 1, described in Table II. (b): Tensor estimation error
for tensors 2, 3 and 4, described in Table III.

We can now use this relation to obtain an expression for the term
∥X 0 ×r ∆T r∥2H contained in equation (15) as

∥X 0 ×r ∆T r∥2H
= Tr

[
[X 0]

H
(r) ·∆TH

r ·∆T r[X 0](r)

]
≈ Tr

[
(U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r +∆U [s]
r ·∆U [s]H

r )

· [X 0](r) · [X 0]
H
(r)

]
= Tr

[
U [s]

r ·∆U [s]H

r ·∆U [s]
r ·U [s]H

r · [X 0](r) · [X 0]
H
(r)

]
.

Now, we use equation (6) and again neglect the terms that contain
O(∆2) to simplify this further to

∥X 0 ×r ∆T r∥2H
≈ Tr

[
U [s]

r ·Σ[s]−1

r · Ñ
H

r ·U [n]H

r ·U [n]
r · Ñr ·Σ[s]−1

r

·U [s]H

r · [X 0](r) · [X 0]
H
(r)

]
= Tr

[
U [s]

r ·Σ[s]−1

r · Ñ
H

r · Ñr ·Σ[s]−1

r ·U [s]H

r

·U [s]
r ·Σ[s]

r · V [s]H

r · V [s]
r ·Σ[s]

r ·U [s]H

r

]
= Tr

[
U [s]

r ·Σ[s]−1

r · Ñ
H

r · Ñr ·Σ[s]−1

r ·Σ[s]
r ·Σ[s]

r ·U [s]H

r

]
= Tr

[
Ñ

H

r · Ñr ·Σ[s]
r ·U [s]H

r ·U [s]
r ·Σ[s]−1

r

]
= Tr

[
Ñ

H

r · Ñr

]
= Tr

[
vec{Ñr} · vec{Ñr}H

]
.

Therefore, E{∥X 0 ×r ∆T r∥2H} is reduced to

E{∥X 0 ×r ∆T r∥2F} ≈ Tr[R̃r]. (16)

Next, we need to obtain an expression for E
{
∥N [s]∥2H

}
. To that

end, let us express N [s] and N as (R + 1)-order tensors N [s] =

N
R

×r
r=1

T r ×R+1 1 and N = N ×R+1 1. Using this formulation

we can take the R+ 1-mode unfolding of N [s] (i.e., [N [s]](R+1) ∈
C1×M ) to obtain [N [s]](R+1) = 1 · [N ](R+1) ·

(⊗R
r=1 T r

)T
=

vec
{
[N ](R)

}T ·
(⊗R

r=1 T r

)∗
. Using this expression we get

E
{
∥N [s]∥2H

}
= E

{
∥[N [s]]T(R+1)∥22

}
= E

{
Tr
[
[N [s]]T(R+1) · [N [s]]∗(R+1)

]}
= Tr

[(
R⊗

r=1

T r

)
·RR

]
. (17)

Finally, using equations (16) and (17), E
{
∥∆X∥2F

}
from equation

(15) is approximated to

E
{
∥∆X∥2H

}
≈

R∑
r=1

Tr[R̃r] + Tr

[(
R⊗

r=1

T r

)
·RR

]
. (18)

B. Special Case of Uncorrelated Noise

As in Section IV, we simplify this expression for the special
case of uncorrelated noise with variance σ2

N . It can be easily
shown that, in this case, E

{
∥N [s]∥2H

}
= σ2

N ·
∏R

r=1 pr . Using
this property and equation (12), we simplify equation (18) further
to E

{
∥∆X∥2H

}
≈
∑R

r=1 Tr
[
σ2
N · Ipr(Mr−pr)

]
+ σ2

N ·
∏R

r=1 pr .
Finally, we reach the desired E

{
∥∆X∥2H

}
in terms of the noise

variance for the uncorrelated noise case, i.e.,

E
{
∥∆X∥2H

}
≈ σ2

N ·

(
R∑

r=1

(Mr − pr) · pr +
R∏

r=1

pr

)
. (19)

VI. SIMULATION RESULTS

To validate the analytical results obtained in the previous sections,
we perform empirical simulations. To this end we first define the
noiseless tensor(s) and the noise characteristics. For all the simula-
tions, the noiseless low-rank tensor X 0 is X 0 ∈ R20×20×20 and
norm ∥X 0∥2H = 1. Note that, a tensor B ∈ R20×20×20 with r-ranks
(p1, p2, p3) can be generated as B = A×1 W ×2 Y ×3 Z, where
A ∈ Rp1×p2×p3 , W ∈ Rp1×20, Y ∈ Rp2×20 and Z ∈ Rp3×20 are
randomly generated using independent zero-mean Gaussian distri-
butions with equal variance. Furthermore, we use uncorrelated zero-
mean Gaussian distributed noise with variance σ2

N for the realizations
of the noise tensor N ∈ R20×20×20, where σ2

N is calculated as

σ2
N =

∥X 0∥2H
SNR ·M
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TABLE II: Parameters of tensor 1,
used in Figure 1(a)

pr Tr

[
Σ

[s]−2

r

]
r = 1 3 9.7420
r = 2 9 290.0909
r = 3 15 4418.2000

TABLE III: r-ranks of tensors 2,
3, and 4, used in Figure 1(b)

X 0 p1 p2 p3
Tensor 2 5 5 5
Tensor 3 10 10 10
Tensor 4 15 20 20

for the different signal-to-noise ratio (SNR) values 2.
In Figure 1(a), we validate the results obtained in Section IV.

Here, the noiseless tensor X 0 (referred to as tensor 1 in Figure 1(a)),
has the characteristics shown in Table II. Then, after 1000 trials of
uncorrelated noise realizations for each SNR point, the empirical error
curve for E

{
∥∆T r∥2F

}
is computed for r = 1, 2, 3. Furthermore, we

can observe how the analytical expressions obtained using equation
(13) asymptotically match the empirical error curve for each of the
subspace estimates of the noiseless tensor.

Likewise, in Figure 1(b) we validate the results obtained in
Section V. Here, the simulations are conducted for 3 different
noiseless tensors (i.e., tensors 2, 3 and 4) of the same sizes, but
with different r-ranks. Furthermore, the r-ranks (p1, p2, p3) of this
tensors are shown in Table III. As before, 1000 trials of uncorrelated
noise realizations for each SNR point are simulated to obtain the
empirical error curve for E

{
∥∆X∥2H

}
. Furthermore, we can see

how the analytical expressions obtained using equation (19) match
the empirical curves as expected.

VII. CONCLUSION

In this work, a first-order perturbation analysis of the truncated
HOSVD is presented, where we provide closed-form expressions
for the tensor reconstruction error. The derived expressions are
formulated in terms of the second-order moments of the noise,
such that apart from a zero mean, no assumptions on the noise
statistics are required. In addition, the obtained general expressions
have been simplified for the special case of uncorrelated noise with
equal variance. This simplification provides better insights into the
truncated HOSVD performance. The simulation results show that
the proposed solution achieves an excellent match to the empirical
results.
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