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ABSTRACT
In its basic, fully blind form, Independent Component Analysis
(ICA) does not rely on a particular statistical model of the sources,
but only on their mutual statistical independence, and therefore does
not admit a Maximum Likelihood (ML) estimation framework. In
semi-blind scenarios statistical models of the sources are available,
enabling ML separation. Quasi-ML (QML) methods operate in the
(more realistic) fully-blind scenarios, simply by presuming some
hypothesized statistical models, thereby obtaining QML separation.
When these models are (or are assumed to be) Gaussian with distinct
temporal covariance matrices, the (quasi-)likelihood equations take
the form of a “Sequentially Drilled Joint Congruence” (SeDJoCo)
transformation problem. In this work we state some mild condi-
tions on the sources’ true and presumed covariance matrices, which
guarantee consistency of the QML separation when the SeDJoCo
solution is asymptotically unique. In addition, we derive a necessary
“Mutual Diversity” condition on these matrices for the asymptotic
uniqueness of the SeDJoCo solution. Finally, we demonstrate the
consistency of QML in various simulation scenarios.

Index Terms— Quasi-maximum likelihood, blind source
separation, consistency, SeDJoCo.

1. INTRODUCTION

Classically, the Independent Component Analysis (ICA)
framework relies only on statistical independence of the
sources, and does not employ any further statistical model
assumptions. This strong, robust and often well-justified
paradigm gave rise to some classical, well-known model-free
separation approaches, such as mutual information mini-
mization (e.g., [1, 2]), high order moments based methods
(e.g., [3, 4]) and approximate joint diagonalization based on
Second-Order Statistics (SOS) (e.g., [5–7]), to name a few.

In the context of “semi-blind” separation (e.g., [8, 9]),
some statistical information is assumed to be known a-priori,
enabling to obtain the Maximum Likelihood (ML) estimate
of the mixing matrix. In particular, for temporally-correlated
Gaussian sources with known (distinct) temporal covariance
structures, the resulting likelihood equations take a special
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form of joint matrix transformations (reminiscent of, but es-
sentially different from, approximate joint diagonalization),
termed a “Sequentially Drilled” Joint Congruence (SeDJoCo)
transformation in [10] (see also [11] and [12]).

Quasi Maximum Likelihood (QML) approaches (e.g.,
[13–16]), on the other hand, make some model assumptions
on the sources, and use some “educated guess” for the associ-
ated parameters, in order to facilitate a “quasi-” ML estimate,
which would hopefully approximate the ML estimate when
the assumed model is close to reality. Pham and Garat pro-
posed in [17] two QML methods, one of which is tailored to
temporally-correlated stationary sources with distinct spectra.
Presuming that the sources are Gaussian with known spectra,
the implied likelihood of the observed mixtures is expressed
and maximized (with respect to the unknown mixing matrix),
essentially resulting in a set of SeDJoCo equations. How-
ever, since the sources are not necessarily Gaussian, and their
spectra are actually unknown, in this case the resulting SeD-
JoCo equations are in fact the quasi-likelihood (rather than
the likelihood) equations.

While the true ML estimate enjoys some appealing, well-
known properties, such as consistency and asymptotic effi-
ciency [18], these properties are generally not shared by QML
estimates. Our goal in this paper is to outline some mild con-
ditions (not only on the signals, but also on their presumed co-
variance matrices) for the asymptotic uniqueness of the SeD-
JoCo solution and the resulting consistency1 of the QML es-
timate.

2. PROBLEM FORMULATION

Consider the classical linear mixture model

X = AS ∈ RK×T , (1)

where A ∈ RK×K is an unknown deterministic invertible
mixing-matrix, S = [s1 s2 · · · sK ]

T ∈ RK×T is an un-
known sources’ matrix of K statistically independent signals,

1An estimate is considered consistent (with the inevitable scale and per-
mutation ambiguities) in the context of ICA if its resulting interference-to-
source ratios (ISRs) all tend to zero (i.e., perfect separation) when the obser-
vation lengths tend to infinity.
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each of length T , and X is the observed mixtures matrix,
from which it is desired to estimate the demixing-matrix B ,
A−1 in order to separate (estimate) the source signals. We
start by briefly reviewing the semi-blind scenario with Gaus-
sian sources and the corresponding ML approach, which leads
to the SeDJoCo equations. We then move to the fully-blind
scenario and formulate the QML approach, in which the true
(but unknown) statistical model is replaced by a presumed
model.

2.1. The ML Approach for Gaussian Semi-BSS
As shown in [9, 13] and [19] (chapter 7), when the source
signals are zero-mean Gaussian, each with a known, Positive-
Definite (PD) temporal covariance matrix Ck , E

[
sks

T
k

]
∈

RT×T distinct from all other covariance matrices, the ML es-
timate “BML is a solution of the following set of nonlinear
equations: “BQk

“BT
ek = ek, ∀k ∈ {1, . . . ,K}, (2)

where the “pinning vector” ek denotes the k-th column of the
K ×K identity matrix, and where the ordered set of matrices

Qk ,
1

T
XC−1k XT ∈ RK×K , ∀k ∈ {1, . . . ,K}, (3)

are termed the “target-matrices”. The solution “B of (2) jointly
transforms the set of target-matrices so that the k-th column
(and, by symmetry of Qk, also the k-th row) of the k-th trans-

formed matrix “BQk
“BT

equals the vector ek.
As shown in [10], a solution “B always exists, but is (gen-

erally) not unique, as K! − 1 other essentially different (for
K > 2) solutions may be characterized as in [20,21]. The so-
lutions of (2) which are not the global maximizer are merely
stationary points of the likelihood.

2.2. The Gaussian QML Approach for BSS

For the model (1), in a fully blind scenario no prior knowledge
on the sources is available (except for their mutual statistical
independence), neither in terms of their full distributions, nor
in terms of any other statistical property, such as their tempo-
ral correlations. Thus, in a QML approach, a given hypothet-
ical model of sources is assumed (incorporating their statis-
tical independence), which is hopefully (but not necessarily)
“close” to reality. The estimated demixing matrix “BQML is
then obtained as a solution of the likelihood equations for the
assumed hypothetical model, which are commonly termed the
“quasi-likelihood equations”.

One plausible QML approach is to assume that all sources
are zero-mean Gaussian with some (distinct) PD temporal co-
variance matrices ‹Ck, thereby obtaining the SeDJoCo equa-
tions (2) once again, only now they are quasi-likelihood equa-
tions, and the target-matrices (3) are simply redefined as

Qk ,
1

T
XP kX

T, ∀k ∈ {1, . . . ,K}, (4)

where P k = ‹C−1k . Of course, these P k matrices are not
necessarily (and in practice almost never are) the true inverse
covariance matrices. Nonetheless, when they are chosen ap-
propriately, according to mild conditions specified in the next
section, the resulting SeDJoCo solution (or at least one of the
solutions, if the solution is not unique) is guaranteed to be a
consistent estimate.

Note that if the sources are indeed Gaussian and each P k

somehow happens to coincide with C−1k , the QML estimate
essentially becomes the ML estimate. We shall therefore refer
to a QML estimate as a “(Q)ML” estimate whenever referring
to a property shared by both the QML and ML estimates.

3. CONDITIONS FOR CONSISTENCY &
ASYMPTOTIC UNIQUENESS OF (Q)ML

We begin by noting that for A = I (a “non-mixing” con-
dition), the (Q)ML target-matrices Qk (4) are asymptotically
diagonal under some mild conditions stated in the Lemma
below. This important property will be used later to estab-
lish consistency of the resulting estimates under mixing con-
ditions.

Lemma 1 (Asymptotic diagonality of the target-matrices
when X = S) Let us temporarily denote the observation-
length-dependent (PD) covariance matrices and their pre-
sumed inverses (resp.) as C

(T )
k ,P

(T )
k ∈ RT×T for an ob-

servation length T . Consider the conditions:

1. The following limits exist and are finite and positive:

φk,` , lim
T→∞

1
T Tr
Ä
P

(T )
k C

(T )
`

ä
> 0 ∀k, ` ∈ {1, . . . ,K}.

2. All matrices C
(T )
k , P

(T )
k are element-wise bounded

by an exponentially-decaying Toeplitz matrix, namely
there exist some finite ρ and a positive α, such that

|C(T )
k [m,n]|, |P (T )

k [m,n]| < ρ2 · e−α|m−n|

∀k ∈ {1, . . . ,K},∀m,n ∈ {1, . . . , T},∀T ∈ Z+

3. The 4-th order joint cumulants of each source are simi-
larly bounded by an exponentially decaying function of
the time differences, i.e., there exist some finite % and a
positive β, such that for each k ∈ {1, . . . ,K}

|cum(sk[m], sk[n], sk[p], sk[q])|
< %4 · e−β(|m−n|+|p−q|+|m−p|+|n−q|+|m−q|+|n−p|)

for all m,n, p, q, where cum(·, ·, ·, ·) denotes the 4-th
order joint cumulant of its arguments.

Under these conditions the following property holds:
For A = I (so that X = S), the (Q)ML target-matrices Qk

are asymptotically diagonal for all k ∈ {1, . . . ,K},

A = I : Qk =
1

T
SP

(T )
k ST m.s.−−−−→

T→∞
Φk, (5)
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where Φk , Diag(φk,1, φk,2, . . . , φk,K) is a PD diagonal
matrix with φk,1, . . . , φk,K (defined in Condition 1) along its
diagonal, and where the convergence is in the mean square
sense [22].

Note that the conditions of the Lemma are quite loose and
are readily satisfied, e.g., whenever the sources are stationary
parametric linear processes (Auto-Regressive (AR), Moving-
Average (MA) or ARMA) with finite 4-th order moments and
the P

(T )
k matrices are symmetric banded Toeplitz matrices,

but also for many other types of non-stationary signals and
non-Toeplitz matrices, as long as the C

(T )
k and P

(T )
k matri-

ces, as well as the joint cumulants tensor, all have bounded
diagonals and a sufficient rate of decay of their elements away
from their diagonals.

Due to space limitations, a rigorous proof is omitted from
here; Note only that the mean of Qk[p, q] = 1

T s
T
pP

(T )
k sq

reads

E [Qk[p, q]] =
1

T
Tr
Ä
P

(T )
k E[sqs

T
p ]
ä

={
1
T Tr
Ä
P

(T )
k C(T )

p ]
ä
−−−−→
T→∞

φk,` p = q

0 p 6= q
, (6)

and using Conditions 2 and 3 it can be shown that their vari-
ances tend to zero (note further that the exponential decay of
the bound in these conditions is sufficient but not necessary).

This important property of asymptotic diagonality would
guarantee the consistency of an estimate obtained as a SeD-
JoCo solution, as long as this solution is asymptotically
unique. While the conditions of Lemma 1 can be easily sat-
isfied by the P k matrices, there is an additional necessary
condition that has to be satisfied by these matrices (together
with the true Ck matrices) in order to obtain such asymptotic
uniqueness. To derive this condition we note the following.

Let “BQML denote a (specific) solution of the SeDJoCo
equations (2) with target-matrices defined as in (4). By
Lemma 1 we have, for all k ∈ {1, . . . ,K},“BQMLQk

“BT

QML = “BQML

Å
1

T
XP kX

T

ã “BT

QML =“BQML

Å
1

T
ASP kS

TAT

ã “BT

QML =Ä“BQMLA
äÅ 1

T
SP kS

T

ãÄ“BQMLA
äT

,“GÅ 1

T
SP kS

T

ã “GT Lemma 1−−−−−−→
T→∞

“GΦk
“GT

,

where we have defined “G , “BQMLA as the QML estimated
global demixing-mixing matrix. Thus, since “BQML is a so-
lution of (2), the implied asymptotic SeDJoCo equations, ex-
pressed in terms of “G, take the form“GΦk

“GT
ek = ek, ∀k ∈ {1, . . . ,K} . (7)

It is easily seen that the diagonal matrix (which implies per-
fect separation)“Go = Diag

Ä
φ
−1/2
1,1 , φ

−1/2
2,2 , · · · , φ−1/2K,K

ä
(8)

solves (7) , and consequently we have“GoΦk
“GT

o = Diag

Å
φk,1
φ1,1

,
φk,2
φ2,2

, . . . ,
φk,K
φK,K

ã
. (9)

However, the following is a necessary condition for the
uniqueness of “Go as a solution of (7) (and therefore also
of the respective separating solution “Bo , “GoA

−1 as a so-
lution of (2)).
The “Mutual Diversity” condition:

∀i 6= j ∈ {1, . . . ,K} : ∃k 6= ` ∈ {1, . . . ,K} :

φk,i · φ`,j 6= φ`,i · φk,j . (10)

To show its necessity, assume that it is not satisfied, so that

∃i 6= j ∈ {1, . . . ,K} : ∀k 6= ` ∈ {1, . . . ,K} :

φk,i · φ`,j = φ`,i · φk,j ⇒ φk,i
φk,j

=
φ`,i
φ`,j

, µ. (11)

Now define the diagonal matrix Λ ∈ RK×K in which

Λ[j, j] =
√
µ
φj,j

φi,i
and Λ[k, k] = 1 ∀k 6= i. Then

Λ“GoΦk
“GT

o Λ
T = Diag

Å
φk,1
φ1,1

, . . . ,
φk,i
φi,i

, . . . ,
φk,i
φi,i

, . . . ,
φk,K
φK,K

ã
,

(12)
where the two equal elements are in its [i, i]-th and [j, j]-th
positions. Therefore, if we now define a rotation matrix U ∈
RK×K along the i and j coordinates, such that

U [k, `] =



1 k = ` 6= i, j

cos(θ) k = ` = i, k = ` = j

sin(θ) k = i, ` = j

− sin(θ) k = j, ` = i

0 otherwise

, (13)

and θ is some arbitrary rotation angle, multiplying by U on
the right and by UT on the left will have no further effect:

UΛ“GoΦk
“GT

o Λ
TUT = Λ“GoΦk

“GT

o Λ
T. (14)

If we now multiply by Λ−1 on the left and on the right, we
would undo the operation in (12) and satisfy the SeDJoCo
equations again (as in (9)), that is

Λ−1UΛ“GoΦk
“GT

o Λ
TUTΛ−T

= Diag

Å
φk,1
φ1,1

,
φk,2
φ2,2

, . . . ,
φk,K
φK,K

ã
, (15)
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so that the matrix “G∗ , Λ−1UΛ“Go , which is obviously not
diagonal (for θ 6= 0, π), also solves (7), and therefore in this
case the separating solution “Bo is not a unique solution of the
SeDJoCo equations (2) (not even asymptotically).

The “Mutual Diversity” (MD) condition essentially deter-
mines mutual limitations on the hypothesized P k and true
Ck matrices. Note first, that the basic ICA SOS identifiabil-
ity condition (e.g., [9]), which requires that all Ck matrices
be distinct (i.e., no two matrices in the set are identical up to
multiplication by a constant) is already contained in the MD
condition (as could be expected), since if, say, Ci = γ · Cj

(for some i 6= j ∈ {1, . . . ,K} and some constant γ), then for
these i, j, regardless of the choice of P k matrices, we shall
always have φk,i · φ`,j = φ`,i · φk,j (∀k, ` ∈ {1, . . . ,K}),
and the MD condition would be breached. Therefore, the MD
condition generalizes the ICA SOS identifiability condition.

Moreover, in the (semi-blind) case of ML estimation,
when all P k are the true C−1k (resp.), we have φk,k = 1
for all k, and (if all Ck are distinct) also φk,` · φ`,k > 1
for all k 6= ` (by applying Jensen’s inequality [23] with the
convex function φ(x) = 1/x, x ∈ (0,∞) to the eigenvalues
of C−1k C`), and therefore the MD condition is automatically
satisfied for all i 6= j with k = i, ` = j.

However, in the case of QML estimation, the choice of P k

matrices must consider the MD condition. Note, for example,
that the condition forbids the use of the same matrix P (or
multiples thereof by a constant) for all P k (but generally does
not forbid the use of two or more identical matrices in the set).

Although we have only shown that the MD condition is
necessary for the asymptotic uniqueness of the SeDJoCo so-
lution, according to our experience it is usually also sufficient
(although counter-examples do exist). In the following sec-
tion we demonstrate the consistency of the resulting QML es-
timate in various scenarios.

4. SIMULATION RESULTS
We simulated three different scenarios, all sharing the follow-
ing setup. A set of K = 4 sources, all MA processes of
order 5 (MA(5)), was generated by filtering statistically in-
dependent, zero-mean, unit-variance, temporally-i.i.d. noises,
denoted {wk[n]}4k=1, using 4 different fixed Finite Impulse
Response (FIR) filters of length 5 with randomly drawn coef-
ficients. In each trial the mixing matrix’ elements were drawn
independently from a standard Gaussian distribution, and we
used T samples of the mixture signals to construct the target-
matrices (4) for the SeDJoCo equations. Newton’s Conju-
gate Gradient [10] was used to solve SeDJoCo with an ini-
tial guess “B = I , followed by the “identification-correction”
scheme [21]. Our results are based on 104 independent trials.

In the first scenario {wk[n]}4k=1 were all Gaussian (hence
so are the sources), but the {P k}4k=1 matrices were taken as
the inverses of correlation matrices of arbitrary MA(4) pro-
cesses (unrelated to the true sources). In the second sce-
nario, all P k matrices were taken as the inverses of the true

Fig. 1: Average ISR vs. T for the three scenarios. Scenario 1: Gaussian
driving-noises with arbitrary P k’s, Scenario 2: Uniform driving-noises with
P k = C−1

k
, Scenario 3: Laplace driving-noises with arbitrary P k’s. Re-

sults are based on 104 independent trials

Ck matrices (resp.), but {wk[n]}4k=1 were all Uniformly dis-
tributed. In the third scenario, {wk[n]}4k=1 were all Laplace
distributed, and (similarly to the first experiment) the P k ma-
trices were taken as the inverses of the correlation matrices
of MA(3) processes. Obviously, in all three scenarios the re-
sulting SeDJoCo equations are “quasi”-likelihood equations
(either due to “wrong” P k matrices, or to a non-Gaussian
sources distribution, or both). All the conditions of Lemma 1
were naturally satisfied by construction, and we verified that
the MD condition was satisfied as well.

Fig. 1 shows the average empirical total ISR (as defined,
e.g., in [9]) versus T , obtained by solving the QML SeDJoCo
equations (2) as described above. Clearly, the ISR decreases
monotonically and a consistency trend is evident. We remind
that in the first and third scenarios we chose the P k matrices
arbitrarily (and randomly), in order to demonstrate the robust-
ness of the QML estimate. In practice, however, an “educated
guess” for the sources’ covariance matrices may be available,
which would directly affect (and improve) the resulting ISR.
In fact, it is our purpose to extend this work to a more general
performance analysis of the QML estimate in future work.

We note in passing that although the sources considered
in these simulations are stationary, our theoretical results are
valid for any set of sources (and P k matrices) that satisfies the
conditions of Lemma 1 and the MD condition, which clearly
do not require stationarity.

5. CONCLUSION
In the context of blind separation of temporally-diverse
sources using the Gaussian QML approach, we presented
some mild conditions on the sources’ covariance and cumu-
lants structures (trivially satisfied for a wide range of sources),
as well as on the hypothesized covariance matrices, under
which the asymptotic diagonality of the “target-matrices” for
the quasi-likelihood (SeDJoCo) equations is guaranteed in a
non-mixing condition. Such diagonality guarantees, in turn,
the consistency of at least one of the SeDJoCo solutions. In
addition, we derived the MD condition, which is necessary for
the asymptotic uniqueness of that solution, and generalizes
the ICA SOS identifiability condition.
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